
,

Report Yo. UIUCDCS-R-87-1327

I
C’ILU-ENG-87-1714

I
E
I!

A FUNCTIONAL P R O G R A k m N G INTERPRETER

by
~~~~~~ * \  * t L  

Arch Douglas Robison 

March 1987 



A FUNCTIONAL PROGRAMMING I N T E R P R E T E R  

bv 
Arch Douglas Robison 

THESIS 

DEP.\RTMENT OF COMPUTER SCIENCE 
1304 W. SPRINGFIELD AVENUE 

URBANA, IL 61801 
UNIVERSITY OF ILLIYOIS AT URBXYA-CHA!dP.-\iGN 

This work was supported by a grant from NASA 
Contract .\lumber NAG 1-613 



A FUNCTIONAL PROGRAMMING INTERPRETER 

BY 

ARCH DOUGLAS ROBISON 

B.S., Case Western Reserve University, 1984 

THESIS 

Submitted in partial fulfillment of the requirements 
for the degree of Master of Science in Computer Science 

in the Graduate College of the 
University of Illinois at Urbana-Champaign, 1987 

Urbana, Illinois 



iii 

ACKNOWLEDGELMENTS 

I'would like to thank my thesis advisor, Roy Campbell for support and suggestions dur- 

ing the project. I thank all the members of the Professional Workstation Research Group for 

answering my questions about the UNIX anatomy. The Computer Science Department and 

CRL are to be commended for providing the excellent computing facilities which made this 

project possible. Finally, I would like to thank John Backus for caking time to give che lec- 

ture which inspired this thesis. . 



1 
a 
4 
1 

iv 

TABLE OF CONTENTS 

1 
F 

E 
t 
I 
tr 
I 

CHAPTER 

1 . Introduction ........................................................................................................... 

2 . Background ............................................................................................................ 
2.1. Origins ..................................................................... i .................................... 
2.2. Goals ............................................................................................................. 

3 . 

4 . 

3 . 

6 . 

7 . 

Language ................................................................................................................ 
3.1. Objects .......................................................................................................... 
3.2. Functions ...................................................................................................... 
3.3. Program Forming Operations ....................................................................... 
3.4. IFP Environment .......................................................................................... 

Interpreter Design .................................................................................................. 
4.1. Data Structures ................... ; ......................................................................... 
4.2. Xlgo r it hms .................................................................................................... 

IFP Example Programs .......................................................................................... 
5.1. Tangent ........................................................................................................ 
5.2. Greatest Common Factor .............................................................................. 
5.3. Powerset ....................................................................................................... 
5.4. Quicksort ...................................................................................................... 

Per for mance ........................................................................................................... 
6.1. Speed ............................................................................................................ 
6.2. Portability .................................................................................................... 

Conclusion ............................................................................................................. 

APPENDIX A . IFP Grammar .................................................................................... 

APPEIWIX B . Differences between IFP and Backus’ FP ............................................ 

APPENDIX C . Benchmark Program .......................................................................... 
References ................................................................................................................... 

1 

2 
2 
3 

. 
5 

3 
7 
11 
16 

20 
20 
26 

3: 
37 
38 
33 

-40 

-42 
12 
15 

47 

1a 

31 

33 

.j 9 

. 



1 

CHAPTER 1. 

Introduction 

Functional Programming (FP)Bac78 is an alternative to conventional imperative pro- 

gramming languages. This thesis describes a n  FP interpreter implementation. Superficially, 

FP appears to be a simple, but very inefficient language. Its simplicity, however, allows it to 

be interpreted quickly. ,Much of the inefficiency can be removed by simple interpreter tech- 

niques. 

This thesis details the design of the Illinois Functional Programming (IFP) interpreter, 

an interactive functional programming implementation which runs under both MS-DOS and 

UNE. '  The IFP interpreter allows functions to be created, executed, and debugged in an 

environment veiy similar to U N E .  IFP's speed is competitive with other interpreted 

languages such as BASIC. 

'MS-DOS and WIX are Wademarks of the .Microsoft Corporation and Bell Laboratories respectively. 



2 

CHAPTER 2. 

Background 

“Look,” said Roark. “The famous flutings on the famous columns -what are they there for? 
To hide the joints in wood-when columns were made of wood, only these aren’t, they’re 
marble. The  triglyphs, what are  they? Wood. Wooden beams, the way they had to be laid 
when people began to build wooden shacks. Your Greeks took marble and  they made copies 
of their wooden structures out  of it, because others had done it tha t  way. Then  your masters 
of the Renaissance came along and  made copies in plaster of copies in marble of copies in 
wood. Now here we are, making copies in steel and concrete of copies in plaster of copies in 
marble of copies in wood. Why?” 

- Ayn Rand, The Fountainhead 

2.1. Origins 

Conventional computer languages descend directly from machine language. Each 

language feature traces its ancestry to a machine level counterpart. Variables evolved from 

storage locations; GOT0 and IF statements mimic jump and branch instructions. Though 

these abstractions of machine language free the programmer from machine- dependent detail. 

they still force the programmer to work on the same word-at-a-time level as the machine. 

In his 1978 Turing Award Lecture, John Backus presented a critique of conventional 

languages and an alternative: functional programming (FP).‘ FP programs have neither the 

control flow nor variables of conventional languages. Instead programs are directly con- 

structed from smaller programs. 

Berkeley U N M  has an FP im~lementationBad8~. Berkeley FP follows Backus’ FP 

definition closely, except for minor character set changes. The Berkeley FP interpreter is 

‘From here on, FP will denote any functional programming employing the combinator style of Backus’ FP 
Backus’ FP will always be referenced explicitly as such. 



3 

written in Franz LISP. Functions are translated into lisp functions which are then inter- 

preted by the LISP interpreter. Alternatively, the LISP functions may be compiled into 

machine code. 

The Berkeley FP is slow; a Berkeley FP program may run as much as 20 times slower 

than its BASIC counterpart. The interpreter carry’s the unnecessary overhead of Franz LISP. 

The simplicity of FP is lost when translated into LISP. For example, FP has a trivial calling 

convention: every function has a single anonymous argument. In contrast, the LISP transla- 

tion uses lambda-bindings with multiple arguments, which are more complex and cime- 

consuming. A simple language should be evaluated by simple methods. 

2.2. Go& 

Most programming languages are extremely complex, thus making mere implementation 

complex and difficult, much more so an efficient implementation. FP is a much simpler 

language. so more effort could be made towards an efficient and friendly implementation. 

There were three general criteria for the interpreter. First, it should include debugging 

features wch as a trace mechanism and domain error messases. Second, the interpreter 

should run on generally available computer systems. Finally, it should run quickly. bfost 

available computers are of the Von-Neumann model, so the interpreter must run efficiently 

within the constraints of the “Von-Neumann Bottleneck”. 

The interpreter was specified to have the following features: 

1. Define new FP functions. 

2. Evaluate an FP application. 

3. Trace the evaluation of an application. 



4 

4. Show the reasons (back-trace) for an undefined result. 

The first two features simply implement Backus’ FP system. The tracing feature wag 

adopted from Berkeley FP. The last feature was  specified from experience with Berkeley FP. 

Errors in FP programs result in a undefined value which propagates to  the final output. 

Within Berkeley FP, there is no reporting of why an error occurred, so debugging programs 

is extremely difficult. Though the error reporting is not pure FP (the error message is a side 

effect!), it is of great practical value. 



5 

1 

CHAPTER 3. 

Language 

This chapter gives an  overview of the IFP language. The reader is referred to the user’s 

manualRobeS for the finer details such as where to put the semicolons. 

The IFP domain includes objects, junctions, and program forming operations (PFO). 

PFO are sometimes called functional forms. They correspond to data. procedures, and con- 

trol structures in conventional languages respectively. 

3.1. Objects 

The objects of IFP represent data. Objects may be atoms, sequences, or bottom. 

Atoms are scalar data such as numbers, boolean values, and strings. A sequence corresponds 

to LISP’s list. Bottom is neither atom nor sequence, it denotes an undefined result. 

3.1.1. Bottom 

The simplest IFP object is bottom, which is written in IFP as ”?”. Bottom represents 

an Undefined value, such as the result of div is ion  by zero. Like Backus’ FP, IFP h a s  the 

bottom preserving property. The bottom preserving property requires that application of a 

function to an undefined input results in an undefined output. A corollary is that any data 

structure containing “?” is itself equal to ”?”. 



3.1.2. Atoms 

In Backus’ FP there is only one type of atom, the string. Some strings represent 

numbers or boolean values. Arithmetic functions could be applied to numeric strings, as in 

awkAho84 but there are both theoretic and practical reasons for not doing this. On the prac- 

tical side, arithmetic on the string representations of numbers is slow on most machines. A 

clever interpreter, however, could store numeric strings internally as integers or floating point 

numbers. 

There would still be a theoretic problem. Consider the string “0.000”. If stored as a 

floating point number, it would be indistinguishable from the string *‘O.O”. When treated as 

strings we wish to  distinguish between the two, when treated as numbers we want the two 

strings to be considered equal. We could have both “string equality” and “numeric equality” 

tests, but this would seem unnecessarily complex. The IFP atomic domain therefore contains 

the mutually exclusive types of character strings, integers, reals, and boolean values. The 

IFP type partitioning is shown in figure 1. The boolean constants “true” and “false” are 

denoted t and f respectively. 

3.1.3. Sequences 

An IFP sequence is a tuple of objects delimited by angle brackets. Below are some 

sequences: 

<a b c> 
(3 1 4 1 5> 
<> 
<plus <a b> 2> 

In Backus’ FP, empty sequences are also atoms; in IFP empty sequences are not atoms. The 

choice is somewhat arbitrary, it mostly emphasizes a viewpoint. In LISP, the empty list is an 



. 

7 

2b jec tz 
Ato 

1 
a 
I 
I 
1 
1 
t 
P 
L 
E 
1 
1 
0 
f 
8 
I 

atom since it is a leaf of LISP’s tree structures. In IFP, the sequences are more like arrays, so 

the empty list is treated ab an empty array. 

I Booleans 

Integers 

i 

i Strings 

Sequences 

c 
Figure 1 

3.2. Functiona 

IFP functions map objects into objects. They are true functions in the mathematical 

sense in that the mapping is injective. IF P functions preserve referential transparencyTen78, 

that  is the identity: 



8 

f (. )=f (.) 
always holds. IFP functions are strict and bottom preservingBac7*. We denote the applica- 

tion of a function to-an object with a colon, that  is:' 

.:f - fk) 
The terminology should be clarified a t  this point. The string denoting the application of 

function f to object t is called an expression. Expressions are distinct from functions and 

objects. 

3.2.1. Primitive Funct ions  

Primitive functions are built into the interpreter. Since they are too numerous to all be 

listed here, only those used in this thesis will be described. -Most mathematical functions 

have their usual names in IFP. For example, the sine and cosine functions are sin and cos. 

Dyadic functions such as addition expect a two-element sequence (pair) as input. For exam- 

ple: 

( 3 4 , :  + + 7  

Multiplication and division are denoted by "*" and "%" respectively. 

The identity function id returns its argument. 

z:id = r 
The null function tests if a sequence is empty. 

<>:null 3 t < z , ,  * * >:null 3 f 
The apndl and opndr functions append an element to the left and right sides of a sequence 

respectively: 

'To minimize confusion, we use two different symbols for equality. The symbol = indicates that the left and 
right sides are both [FP expressions. The symbol - indicates that the left side is [FP and the right side IS stan- 
dard machernatical notation. 

I 
8 
J 
I 

a 
.r 
I 
i 
n 
t 
I 
I 



9 

< < z l , t 2 ,  * * t m > , y >  : apndr E <z1,z2, - t m , y >  

The tl and tlr drop the first or last element from a sequence: 

< t l , Z 2 ,  - * *z,> : tlr s < t l , Z 2 ,  * - * 2,,1> 

The cat function catenates sequences: 

< < z 1 1 , ~ 1 2 ,  * . z lnl>t<z21, t22 ,  * t Z n y > ,  . . * < ~ , l , t , 2 ,  * * * t,,,,>> : cat 3 

< E  I l J  12, ’ * * =ln,,t21,%27 * * ’ t?,2, * - * I, l , t ,2 ,  * z,,,> 

There are also structural functionsBae78 which replace the loop and subscript structures 

of conventional languages. The three principle structural functions are dist l ,  distr and trans, 

which are defined below: 

<et11 t i 2  - * .  t L , >  < < t i l  221  . * *  t, I> 

< z 2 1  122 * . .  Z2n > <Z12 222 . ’ .  t,2> 

... ... ... . . .  : trans = . . . . . . . . . . . . 
<z, L z m 2  zmn >> <Zl* Z?, * ’ zmn >> ... 

The heavy use of structural functions by IFP programs affects the interpreter design. A s  

will be described in Chapters 4 and 6, the structural functions diminish interpretive overhead 

at the expense of creating many temporary storage structures (sequences) which must be allo- 

cated and deallocated quickly. 

3.2.2. Function Organisation 

Experience with Berkeley FP indicated that a single flat name space was a serious incon- 

venience, since the user would have no way to group functions in a logical manner. Therefore 



10 

IFP adopted a tree-structure system directly analogous to  UNM’s file structure. Each func- 

tion exists in module which corresponds to a UNIX directory. Functions are named in the 

same manner as UNM files, either by a relative or absolute pathname. Furthermore. the 

user can establish the equivalent of symbolic links via an impart file in each module. The 

hierarchical function organization is syntactic sugar. All pathnames are expanded to absolute 

form when parsed, so the IFP name space is lexically scoped. 

Figure 2 shows part of a typical function hierarchy. The root node is labeled “ r” .  The 

function “t” belongs to the module “arith”, which contains arithmetic functions. The 

module “arith” in turn is a subdirectory of “math”. The addition function would be refer- 

enced by “/math/arithjA”. If it were imported into a given module, then ”+” would suffice. 

b w  
Figure 2 



11 

3.2.3. User Defined Functions 

The user defines functions by creating function definition files. Each file defines a single 

function, and has the form: 

DEF numc AS function; 

where nurnc is a string and function is an IFP function, which is usually other functions com- 

bined by program forming operations. The definition may be freely formatted and occupy 

more than one line. For example, a function which doubles its input can be written: 

DEF Double AS 
[ld,ldl I +; 

(The meaning of the brackets and “ f”  is explained in the next section.) 

3.3. Program Forming Operations 

In conventional languages, functions are combined by storing intermediate results in 

variables. In IFP, functions are combined by “program forming operations” (PFO). Each 

component function is a parameter to the PFO. Like Its component functions, each con- 

structed function has a single input and output. Higher level functions can be built from the 

constructed functions in the same manner. The language APLiVee2 provides a few PFO’s 

(called operators), but their parameters are restricted to primitive functions. 

3.3.1. Cornpoiition 

IFP composition is identical t o  mathematical composition, except that  it is written: 

f l o  

whereas i t  would be written mathematically as 



12 

9 o f  

Writing composition backwards follows from IFP'3 left to right syntax. The vertical bar is 

borrowed from UNM, since composition of functions closely resembles piping between 

processes. Composition is defined by the equality: 

t : f  Ig=(z :f ):g 

Composition is associative, so parentheses are neither necessary nor allowed to indicate 

association in functions such as: 

/ I g l h  

3.3.2. Construction 

The construction of functions is written as a bracketed list of the functions. For exam- 

ple, the construction of functions f , g, and h is written as: 

U I 9 l  hl 

and defined by: 

3.3.3. Constant 

The constant PFO creates a constant function. Constant functions always return the 

same result when applied to any object that  is not "?". Constant functions are written as an 

object (the value to  be returned) preceded by a pound sign "+". The defining equat'ion is: 

e if z=?  
?i f  t=?  

2 : # e  - 

1 
k 



13 

3.3.4. Selector 

The selector P F O  creates selector functions, which behave as constant subscripts. Selec- 

tor functions return the nth element of a sequence and are written as n ,  where n is a positive 

integer. There are also a corresponding set of select-from-right functions, written as n r. The 

defining equations are: 

< z l , t 2 ,  - * - > : n 

JZ,Z 1> : n r < . . .  
I, 

I, 

3.3.5. Apply to Each 

The apply-to-each P F O  is a distributive form which applys a function to each element 

of a sequence. I t  is written as 

EACH / END 

The defining equation is: 

<t,,t2, * * > : EACH f END <I,:! , t l : f ,  * * > 
Xote that construction ar,d apply-ta-each are complerner?tary. The former app!ies mu!tiple 

functions to the same argument, the latter applies the same function to multiple arguments. 

3.3.8. If-Thtn-Ehc 

The if-then-else P F O  allows conditional function application. It is written as 

IF p THEN g ELSE h END 

and the defining equation is: 



14 

[ !dz) ifp(t)=t 
i 

z : IF p THEN g ELSE h END - h ( z )  if p(t)=f 
? otherwise 

The level of nesting of conditional forms may be reduced by using ELSIF clauses. For exam- 

ple: 

IF Pl T” 91 
ELSE 

IF P2 T” 92 
ELSE 

IF P3 m3 93 
ELSE h 
END 

END 
END 

can be rewritten as: 

IF PL -THEN 91 
ELSIF p2 m a g2 
ELSIF p 3  THEN 93 
ELSE h 
END ; 

The “ELSE” part may not be omitted. Where the ”ELSE” part is the identity function, it 

must be explicitly written as such. 

3.3.7. Filter 

The filter PFO filters through elements of a sequence that meet a criteria. It is written 

as: 

FILTER p .END 

and is defined as: 

EACH 

END I cat 
IF P [ Id ]  ELSE [I END 

where p is the criteria expressed as a boolean function. For example, to filter a sequence for 



15 

all pairs of equal elements: 

c c a  0 cc d> cy y> Cr g>> : FILTER = END + cca a> cy y>> 

The filter PFO is an IFP extension to Backus’ FP. Clearly i t  is not necessary since it could 

always be replaced by its definition, but it occurs sufficiently often to merit its inclusion as a 

PFO. 

3.3.8. Right Insert 

The insert PFO reduces a sequence. Its defining equations are: 

<>: INSERT f END - 1 

<Z 1,229 * * J ,  >: INSERT f EXD - <t 1, <z*, * * 2, >: INSERT f EXD >: j 

The name insert comes from picturing the P F O  as inserting its parameter function between 

each element of a sequence, e.g.: 

(1 2 3 4> : INSERT + END + 1+2+3+4 

with right association. 

Functions formed with insert are always undefined for empty sequences. This differs 

from Backus’ FP, in which such functions returned the right identity element of the parame- 

ter function. In theory, this is a convenient feature (e.g. summing an empty sequence would 

yield 0), but it is impractical for the interpreter to know the identity element of user-defined 

functions. The number of c a s e  where the interpreter could know the identity element are so 

few that we might as well define special functions for those cases, e.g: 

DEF sum AS 
IF null THW t O  
ELSE INSERT + END 
END; 



16 

Alternatively, we can append the identity element to the end of the sequence before inserting, 

e.g.: 

D E F  sum AS 
[id,#OI I apndr I INSERT + END; 

Note that insert starts a t  the right of the sequence. Currently there is no “left insert”, 

which would reduce a sequence starting from the left. We can get the same effect, however, 

with insert and the sequence reversal function: 

reverse I INSERT reverse I /  END 

3.3.9. While 

The while PFO is written as: 

WHILE p DO f END; 

and is defined by the recursive functional equality: 

WHILE p DO f END 3 IF p THEN 
/ I “HILE p DO f END 

ELSE id 
END 

That is the while PFO applies the fewest f ’s such that z:f:f:f. ..:f:p is true. 

3.4. IFP Environment 

In the good old days, card decks went in and printouts came out. IFP attempts to pro- 

vide a more productive interface. The interpreter presents the user with an environment 

similar to  UNM or  MS-DOS, depending upon which is the operating system of the host 

machine. The UNM version is discussed here; the MS-DOS version is essentially identical 

except for command spellings. 

A 



17 

When i t  is ready to accept a command, IFP prompts with: 

I f  p> 

The user may edit a source file with any convenient editor. The edit command is the same as 

the U N M  command, for example if the editor is “vi”, the user would respond to the “ifp>” 

prompt with: 

V I  foo 

where foo is the name of the function to be edited. 

To evaluate a function, the user enters the command “show” followed by an expression. 

For example, the user may enter: 

show (3 4> : [+ , - I  ; 

and the interpreter responds with: 

Programs rarely work right the first time. Therefore a language implementation should 

provide for debugging features. One problem of functional languages is that most debusging 

tools [such as traces and dumps) are side effects. Their practical value? however. {ar 

outweighs their blemishing presence. Perhaps truly functional debugging tools can be found 

in the future. 

3.4.1. Back Tracing 

One particularly unfortunate feature of FP’s definition is that  functions cannot princ 

error messages, but instead return the value bottom, which represents an undefined value. 

For example, if the function application: 

<l 2 3, : HorrlbleHalryFunctlon 



18 

returns "?", the user hag no idea of which kind of error occurred. It  could have been a divi- 

sion by zero, subscript out of bounds, or something else, but in all cases the same value is 

returned. For example, consider the inner product function application: 

((1 2 3> <4 5 w>> : Inner; 

IFP indicates both the reason for the creation of "?", the offending argument, and propaga- 

tion of the "?" result: 

/math/arlth/+: not a numeric pair 
(3 , 'N> 

I I IEXIT> ? : /math/arlth/+ 
I IEXIT> ? : EACH /math/arlth/+ END 
IEXIT> ? : /sys/translEACH . .  ENDI/math/arFth/sum 

EXIT> ? : /tmp/Inner 

The functions are printed from their internal representation by an unparser, that  is an ela- 

borate pretty-printing routine. The dot pair ".." is used by the pretty-printer to abbreviate 

functions. The nesting level at which the dots occur may be set by the user with the com- 

mand: 

depth n 

where n is the maximum level to be displayed. In the above example. che depth is 2; level 1 is 

the composition, level 2 is the each PFO, and level 3 is the parameter to each. 

3.4.2. Tracing 

IFP has two forms of tracing. The first form shows all applications and resuits inside a 

function. For example, if we have the function 

DEF Mean AS (* !+lean of arithmetic sequence *> 
[sum, length] t % ; 

and then enter the commands 

trace on Mean; 



8 
1 
11 
1 
It 

we get 

I 
1 
I 
1 
I 
I- 
I 
1 
1 

19 

show (1 2 3 4> : Mean; 

ENTER> <1,2,3,4> : Mean 
IWTER> <1,2,3,4> : [. . , . . I  I " % ' *  
I IENTER> <1,2,3,4> : [sum,length] 
I I IENTER, <1,2,3,4> : sum 
I I IMIT> 10 : sum 
I I IENTER> <1,2,3,4> : length 
I I IEXIT, 4 : length 
I IMIT> <10,4> : [sum,length] 
I IENTER> <10,4> : ?4 
I IMIT> 2 . 5  : % 
IEXIT> 2 . 5  : [..,..I 1 %  

EXIT> 2.5 : Mean 
2.5 

The second form of tracing lets us examine a specific intermediate result. This tracing 

is done with the special PFO "@". The function 

@string 

prints string followed by its argument. Otherwise "@.I' is an identity function. For example, 

if we want to  see the argument to "%" in the Mean function, we can write: 

D E F  Mean AS 
[sum,iength] 1 WBefore ?4 In Mean" I %; 

When this version of Mean is applied to < 1 2 3 4>,  we get the message: 

Before 74 in Mean: (10 4> 



20 

CHAPTER 4. 

Interpreter Design 

A language interpreter is simply a program. Programs have two parts: data  structures 

and algorithms. This chapter describes the IFP interpreter’s data structures and algorithms. 

The interpreter is written in CKer18; therefore examples of the interpreter’s internal workings 

are also presented in C. The examples are simple enough that the reader need noc be 

proficient with C. 

4.1. D8t8 Structures 

Internally, IFP distinguishes eight types of objects. Each ‘object is a discriminated 

union. The object types are: 

BOTTOM 
BOOLEAN 
INT 
FLOAT 
LIST 
STRING 
NODE 
CODE 

Most of the type namm are self descriptive. The NODE type is a compressed representa- 

tion of a function pathname sequence. (See section 4.1.2.1.) The CODE type contains a 

pointer to machine code. It  is internal to the interpreter and not directly available to the 

user. The representations of the other types are described in subsequent sections. 



21 

4.1.1. Scalar Types 

The BOTTOM, BOOLEAN, INT, and FLOAT types ail take a small fixed amount of 

storage. Each is stored in the machine’s native format. The user can never distinguish the 

INT and FLOAT types, so the interpreter may change the representation a t  any time. 

4.1.2. Strings 

Strings are atoms in IFP, but require special treatment since they are variable-length 

entities. IFP strings are stored as linked lists of segments. Each segment contains approxi- 

mately 12 characters. (The exact number is machine dependent.) The first record of the 

linked list contains the reference count for the string. 

The string representation was chosen for the ability to allocate and deallocate strings 

quickly. Compaction of memory is never necessary. With 12 characters per segment and a 4 

byte link field, we effectively use 75% of the memory available if internal fragmentation is 

not taken into account. On the average, half of the last segment for a string is empty, so the 

average internal fragmentation cost is 8 bytes per string. The strings also have a reference 

count. The intent was to allow conversions of call-by-value to  call-by-reference, but none of 

current string operations use this feature. 

Very few string primitives are implemented. Most string operations in IFP are done via 

ezpiode and implode, which convert a string to  a sequence of characters and vice versa. For 

example, to  drop the first character from a string, we write: 

explode I tl I Implode 

The string representations of single characters reside permanently in an array so that  ezplode 

can operate quickly. 



22 

4.1.3. Sequences 

IFP programs generate many sequences on the fly, so the sequence representation must 

allow quick allocation and deallocation of memory. Therefore IF P sequences are represented 

as linked lists. The lists are guaranteed to be acyclic by the definition of FP. That  is, no 

sequence can ever contain itself as a sequence, so all sequences form trees. 

typedef struct LlstCell < 
Object Val; /* Element of sequence */ 

unsigned shor t  LRef; /* Reference count */ 
struct ListCell *Next; /* Pointer t o  nexc element */ 

1 Listcell; 

The one exception in which an indirect cycle does occur is in recursive function 

definitions. These cycles are broken, however, when the function name is deleted. 

There were two choices for garbage collection: a mark/sweep algorithm or reference 

counts. Many of IFP’s sequences are temporarily created by the structural functions. For 

the benchmark program in Chapter 6, Berkeley F P  spends approximately ’25% of its time 

garbage collecting with a mark/sweep algorithm. Reference counting was chosen for IFP, 

though it is not clear if it is an improvement. 

Reference counting introduces the problem of count overflow. With most languages, the 

possible solutions are: 

1. Make the reference count field big enough so overflow never occurs. 

2. Implement a “sticky” reference count. Once the reference reaches its limit, it can not 

be decremented. A garbage collector must reclaim the storage. 

IFP functions do not have side effects. Therefore the sharing of lists does not affect a pro- 

gram, and not sharing lists has no effect. Thus we have another solution to the reference 



23 

count overflow problem: 

3. Copy the data. Actually, the interpreter just copies the offending node and set its .Vezt 

link to the Nezt link of the original node. The whole list does not have to  be recopied, 

unless every list element’s reference count has reached its limit. 

The use of a single type of list-cell is somewhat space inefficient, since each cell must 

take up the worst-case space. For example, a boolean value occupies as much space as a 

double-precision floating-point number. The advantage of having the generic list-cell is that 

we can always replace its value without checking whether i t  would fit. The generic list-cell 

also reduces portability problems, since relative sizes of data types vary for different 

machines and compilers. 

One way to shrink the list-cell would be to use references instead. For example, a list- 

cell holding a floating-point number could contain a pointer to the number instead of the 

number itself. On a typical 32-bit machine, this would reduce a 64-bit floating-point 

number to a 32-bit pointer, thus saving four bytes. Since a list-cell occupies approximately 

16 bytes, this would yieid a 25% saving of iist-ceil memory.  his scheme would increase the -. . 

interpreter’s complexity and memory fragmentation, since a separate memory space would be 

allocated for floating-point numbers. The savings would be machine dependent also. On the 

CRAY numbers and pointers are the same size, in this case the reference scheme would take 

cztto memory. 

4.1.4. Functione 

Backus FP represents functions as objects. In FP primitive functions are represented by 

atoms. For example, the atom trans would represent the transposition function. Functions 



24 

created by PFO' 

are represented as sequences: the first element is the PFO name and the rest oT the elements 

are parameters to the PFO. The IFP interpreter uses the same scheme, except that  function 

and PFO names are pathname sequences. 

For example, the inner product function: 

trans I EACH * END I INSERT + END 

is represented as: 

< 
csys compose> 
csys trans> 
<Csys each> <math  a r l t h  *>> 
Ccsys l n s e r t r >  cmath a r l th  +>> 

> 

Table 1 shows the internal representations of PFO. 

~~~~ 

PFO Representation
1 1.
#e

?
n
nr
f i l f Z i - * . f,
[f l , f ~ , * * . f n l
EACH f END
FILTERp END
INSERT f END
IF p THEN g ELSE h END
WHILEp DO f END

< Csys constant> #e >
< < sys constant > >
< <sys select > n >
< <sys select> -n >
< <SYS compose>, f 1 , f 2,

< <sys construct>, f ,, f *, - *

< <sys each> f >
< <sys filter > p >
< <sys insertr> f >
< <sys if> p g h >
< <3ys while> p f >

* fn >
f, >

Table 1

ELSIF clauses are always expanded into equivalent nested IF-THEN-ELSE constructs. The

representation of "#?" is a special case, because the representation < <sys constant> ?> is

'Program forming operations (PFO) are defined in section 3.3

25

equivalent to "?" by the bottom preserving property.

When evaluating a function application, the interpreter must look up the code

corresponding to the function or P F O pathname sequence. To speed up the search, pathname

sequences are converted to an alternative representation (type NODE) that is a direct pointer

to the function.

4.1.5. Environment

Functions are stored as UNCC files. There is simply a UNCC file tree which corresponds

t o the user's function tree. This is effective as an interpretive environment. The user's favor-

ite editor can be used to edit a function file. When a change is made, only the file correspond-

ing to the altered function must be read and parsed again, thus speeding up incremental

modification.

The interpreter loads function definitions on a demand basis. Currently there is no

memory release mechanism in the interpreter. Once a function is loaded, it remains resident

until it is modified or the interpreter exits.

Furthermore, the use of UNIX files for function definitions allows the use of UNM utili-

ties. For example, the user can list directories with the la, list functions with more, and

search for patterns with grep. Not only docs this save the implementor time, but creates a

familiar user interface.

The only problem is that the interpreter must recognize some of the UNIX commands.

Consider the tm command. I t will delete a file containing a function. If the function is

already resident in the interpreter, the internal representation must be removed. Therefore

26

the interpreter must recognize rm and remove the function from its internal storage.

Currently only the “vi” and “rm” commands are recognized. In both cases, the internal copy

of the function is removed. (The new version of the edited function will be loaded on

demand.) The “mv” and “cd” commands should also be recognized as special, but are

currently not. (Since IFP forks off UNM commands, ‘‘cd” only changes the child’s environ-

ment, not that of the interpreter!)

4.2. Algorithms

IFP has a single evaluation operation apply, which applies a function to an object to

yield another object. In IFP, the application of function 1 to object z is written as:

2 : f

Internally, the interpreter contains the C function:

vold Apply (1nOut.F)
ObjectPtr InOut,F;

The value of ‘Inout is replaced by the result of applying function ‘F to object ’Inout .

There are three types of functions:

Primitive Functions

The function is defined by machine code in the inttypreter. -411 primitive functions have

the same format:

void FJoo (Inaut)
ObjectPtr InOut;
{

. . . /* Code for primitive functlon foo */

8
I
I
I
8

I n C
ClUSlVely . c a l l - b y - r e f e r e n c e is done b y p a s s i n g a p o i 2 L a r co t k e a r g u m e n t

* p d e n o t e s t h e v a l u e p o i n t e d t o by p . and P X d e n o t e s a p o i n t e r to v a r i a b l e .r C C s e s c a l l - c y - * r r

27

To evaluate its application, the machine code is executed with InOut pointing to the

input object. The input object is replaced by the result of the application.

User defined functions

The function is defined by the user. To evaluate its application, the function’s definition

is applied to the argument.

Compound functions

The function is the result of a PFO. The PFO is defined by machine code. To evaluate

the function, the machine code is executed with the PFO’s parameters as additional

arguments. The machine code for a PFO is essentially a control structure which selec-

tively applics the parameter functions to the input. For example, the code for evaluat-

ing function composition is:

Compose (Inaut ,Funs)
ObJectPtr InOut;
ListPtr Funs ;
i

while (Funs != NULL) {
Apply (InOut , &Funs->Val) ;
Fgns = Funs->Next;

>
>

where InOut is the input to the composition PFO and Funs is the list of functions to be

corn@. Inout servcs as an accumulator; the code simply traverses the function list

and applies each function to the accumulator.

Note that Appfy docs not recursively call itself for primitive function evaluation. If we wanted

to convert tail-recursions to iterations, it is only the PFO’s we would have to reimplement;

the primitive functions would remain unchanged.

28

The theoretical order of evaluation in FP and the actual order in the interpreter are

quite different. In principie, all PFO’s combine their parameters to create a new function.

The result function is then applied to the object. This is the usual order in mathematics.

For example, to evaluate:

we first evaluate D, f (z) and then apply f ’ to the argument 2. The actual evaluation is a

top-down recursive procedure. For example, to evaluate:

<3 5> : EACH [ld,#l] I + END;

The following applications occur:

c3,7> : EACH [ld,#ll I + END
3 : [ld,#l] I +

3 : [ld,#l]
3 : Id
3 : #1

<3,1> : +

7 : [ld,#ll
7 : I d
7 : #1

C 7 , D : 4.

7 : [Id,#l] I +

Essentially, A p p l y is a threaded code interpreter similar to FORTHLoeaL. The difference

between IFP and FORTH is in the form of the code and data. FORTH interprets linear code

which specifies transformations of a stack. IFP interprets list-structured code which specifies

transformatiom of a list.

4.2.1. Conversion of Cd-by-Value to Cdl-by-Reference

The reduction evaluation of F P expressions requires call-by-value arguments. Imple-

menting call-by-value by always copying arguments would be expensive in both time and

space, since FP arguments are often complicated structures. Therefore IFP uses call-by-

I
c
1
1

29

reference internally. Since functions cannot modify their arguments, call-by-reference is

indistinguishable from call-by-value. If a function (such as reverse) needs to return a

modified version of its argument, it makes a local copy first. This is analogous to the copy-

on-write scheme for operating systems in which a process image is not copied after a fork

until the parent or child process needs to modify the image.

The internal use of call-by-reference does not eliminate all unnecessary copying. Con-

sider a case of copy-on-write in which the child process wants to modify part of the process

image, but a part which is no longer used by the parent process. An example of this in IFP is

the expression:

X : t r a n s I EACH reverse END

which rotates matrix X 90’ clockwise. In a simple interpreter, trans would make a local

copy of X a n d transpose the local copy. The each PFO would then pass each row of the tran-

sposed matrix to reverse. On each application of reverse to a row, i t would first make a local

copy of the row, and then reverse the row. The copy operation is redundant, however, since

the row handed to reverse ww a local copy already. That is, it doesn’t matter if reverse

alters its argument in this case, since it has sole possession of the argument. The general rule

is: a function may directly modify the section of a list for which the reference counts are all

unity. Statistics for actual IFP programs show that approximately 20-50% of all list cells

are ‘‘recycled” this way rather than created from scratch.

The copy avoidance is simple to implement, it is encapsulated in two procedures:

void CopyTop (A)
L l s t P t r *A;

void Copy2Top (A)
L l s t P t r +A;

I 30

The former effectively generates a copy of list *A, but doesn’t bother to copy the prefix of the

list with unit reference counts. The latter effectively copies the top two levels of *A. Deeper

copying is not required by any of the primitive functions.

4.2.2. Pointer Rotation

Since garbage collection is done with reference counts, the interpreter must be coded

very carefully. If a reference count is too low, an object will be prematurely snatched by the

garbage collector. If a reference count is too high, an unreferenced object will never be col-

lected. Of particular hazard are pointers local to a procedure. They are allocated upon pro-

cedure entry, and more importantly, automatically disappear upon procedure exit.

The simplest way to maintain reference counts is to have functions which do the book

keeping. For example, we could initialize all’pointers to NULL, and then do all pointer

assignments via the function:

~~

void RepLPtr (A, a>
LlstPtr -A , B;

which would replace pointer *A by pointer B and adjust reference counts appropriately. The

overhead, however, is considerable. Consider the sequence of pointer assignments from a list

reverse routine:

Q = T = NULL;
while (R!=NULL) {

T = R ;
R = R->Next;
R->Next = Q;
Q = T;

>
R = Q;
Q = T = N U L L ;

Except for the NULL assignments, all the assignments would have to be done via the

R
I
1

I
1

&
1
I

31

RepLPtr operation (if we were strict about using our pointer copying procedure). Note, how-

ever, that the reference counts are actually unchanged once the reversal is done.

In fact, many pointer manipulations conserve reference counts. A frequently occurring

manipulation is pointer totationsu-. A pointer rotation cyclicly permutes a set of pointers.

For example, a three-way rotation procedure is:

A pointer rotation does not modify reference counts. By using rotations as a primitive

pointer operation, most of the reference count modifications can be avoided. For example,

the list reversal procedure can be rewritten as:

Q = NULL;
while (R!=NULL) Rot3 (&R, &R->Next, &Q> ;
Rot2 (&R, -1 ;

(The Rot2 procedure swaps two pointers.) All the reference counting overhead disappears.

Higher order rotations are also useful, the interpreter even does five-way rotations within the

distribute-left function. (Though the five-way rotation could be replaced by two 3-way rota-

tions.)

4.2.3. Veetorising Lbt Manipulation

For dealing with linked structures the most common memory allocation primitive for

linked structures allocates a single record. An example is the Pascal new procedure. IFP,

however, typically does not work a word at a time. Therefore a faster and more convenient

primitive is implemented:

void NewList (A, N)
LlstCell **A;
long N;

NewLast points *A to a fresh list of N cells ail set to “ T ” ; the last cell of the list points to the

old value of *A. ThAt is insert N new cells at the head of list pointed to by *A. T o simply get

L

a list of N cells, *A’s value is first set to NULL. The NewList operation sounds unnecessarily

complex for a primitive, but actually has the important property that it preserves reference

counts.

4.2.4. Expression Cache

Since FP expressions are referentially transparent, evaluating a given expression yieids

the same result every time. If an expression occurs twice, the interpreter needs only evaluate

the expression once and remember the result. To remember previous results the IFP inter-

preter has an ezptession cacheKe186. The cache associates an expression (input:function) with

an output value.

The cache is implemented as a hash table. Before an expression is evaluated, it is first

mapped to a hash table index. If the corresponding table entry is full, then the entry’s

expression is compared with the expression to be evaiuated. If the two are equal, then the

associated output value is taken from the cache. Otherwise the expression must be evaluated

and the < ezptession,output> association is stored in the cache for future reference. Colli-

sions are resolved by evicting the previous entry from the cache.

The cache lookup speed is limited by the time it takes to hash and compare structures.

Since both these operations take O (n) time3 the cache lookup operation takes O(n) time.

‘0 denota a lower bound; denota an upper bound.

33

Most of the current primitives take at least n(n) time.' Since the expressions with primitive

functions can almost always be computed more quickly than accessing the cache, they are

always evaluated, and never looked up in the cache. The interpreter looks in the cache just

for user-defined function applications. Experiments with the interpreter support the above

reasoning: caching of primitive functions slowed the interpreter down by 27-76%. A third

possibility would be to cache expressions involving PFO. This was not implemented, though

the results would probably be the same as for primitives. The real gains from a cache occur

with user-defined recursive functions as described below.

The interpreter may be compiled with or without the cache mechanism. For most pro-

grams, the extra lookup operation slows down the interpreter, but for certain combinatorial

programs the cache can change the program's asymptotic time. One such program computes

the nth Fibonacci number:

D E F Fib AS
IF [l d , # 2] I C THEN I d
ELSE

END:
sub1 I [Flb,subllFlb] I +

(The sub1 function returns one less than its argument.) Without the cache, the program

- 1.818... . The reason is that computations form a tree a3 takes time O (p) , where 4 is - - 1+\/3
2

shown in figure 3. The tree shows that to compute f (n) , the program must first compute

f(n-1) and f(n-2) The dotted-lines indicate redundant parts of the tree. With the cache,

the interpreter descends the left side of the tree. As the interpreter ascends the left side of the

tree, the result of each right subtree (except f (0)) has already been computed and loaded into

'The two exceptio- are iota and repeat, which are defined as k:iota - <1,2,3, * * k > and
<z k>:repeat < k repetitions of z>. Clearly their execution time is linear in k and independent of the
structural size of their input.

34

..

Figure 3

the cache. The cache dynamicalry merges the tree’s branches so that the execution time is

O(n).

An interesting phenomena is tha t the speedup may exceed the cache hit rate. The cache

hit rate is defined as:

number of results found in cache
number of results looked for in cache

In the Fibonacci number case, the left subtree must always be computed, and the right sub-

tree (except /(O)) is always found in the cache. Therefore the the hit rate asymptotically

3
1

I
II approaches 50%. The speedup is defined as:

35

execution time without cache
execution time with cache

Without the cache, ail the nodes in the tree must be evaluated. The recurrence relation for

the number of nodes t, in the tree is:

t p l
:,=1

t,=:,-*+:,-2+1

From this recurrence it follows that:

t, = 0 14- 1
With the cache, the n left-most nodes and f (0) are ornputed; The n-1 right subtrees of

these nodes are looked up in the cache. The total computation time is f?(n). Thus the

speedup is:

o [$]
which asymptotically approaches cc even though the hit rate approaches only 50%.

The speedup argument assumes that no collisions occur in the cache’s hash table. The

current hash table contains LO24 entries. The effect of collisions is difficult to assess. Cache

access are far from random; they are dependent upon the function being computed. For the

Fibonacci function only the two most recently evaluated expressions contribute to the next

expression, so no significant collisions occur. If these fortuitous circumstances did not exist,

then the analysis is much more complex. A sketch of one possible analysis follows. Suppose

that:

p = cache misn rate = l-cache hit rate

time for addition
time for cache lookup

c =

The average execution time t, for evaluating f (n) is the weighted average of two possibili-

ties: either f (n) is in the cache, or /(a) must be computed from f (n - 1) and f (n - 2) . The

36

recurrence is:

t , = (l -p)+pe

t , = (l-p)+pc

t, = (l - p) + P [t,-,+t.-?+c

The roots of the homogeneous characteristic equation are:

6

Taking r l as the larger root, the asymptotic approximation of t, takes the form:

t, = o(r lmj
for r , > l . In the perfect situation, the cache miss-rate approaches 0.5. Suppose that collisions

cause the cache miss-rate to rise to 0.6. Then the average execution time is:

t, = 0 [1.130 ..."]
Though not linear, the time is still asymptotically better than the time for uncached evalua-

tion, 0 1.618 ..." . This analysis, however, assumes constant and independent cache-miss pro-

babilities, which is known, as mentioned earlier, to be a false assumption for the Fibonacci

function. Therefore applying similar logic to other combinatorial programs is an estimate

only and may not be realistic.

(1

37

CHAPTER 5.

IFP Example Programs

This chapter presents some IFP programs. The programs are selected to demonstrate the

power and elegance of functional programming and the IFP notation.

8
5.1. Tangent

The tangent of an angle is the quotient of its sine and cosine. An IFP tangent function

is shown in listing 1. Comments are delimited by "(*" and "*)". Sote that the independence

of the sine and cosine calculations is explicit in IFP. The sine and cosine can be calculated in

any order, or in parallel. Furthermore, the program expresses the computation without

intermediate variables.

(*
* Tangent

* Compute the tangent of an angle expressed in radians.

* E.g. 0.7854 : Tangent -> 1

*

*

*)

DEF Tangent AS [sin,cosl I %;

Lhting 1

38

5.2. Greatest Common Factor

The greatest common factor of two positive integers can be defined recursively:

if a=6
gcf (a$) = gcf (4-6,6) if a>6

gcf (6 -a ,a) if a <6 l a
An IFP translation of these equations is show in listing 2. Since program is tail recursive, it

may be transformed with the while PFO into the program shown below.

DEF gcf AS
WHILE -= DO

IF > THEN Id ELSE reverse END I
c- ,21

END I 1;

(The function -= test for inequality of two objects.)

Lbting 2

(*
* gcf *
* Compute greatest common factor of a numeric pair.
*
* Example:
* <144 128> : gcf -> 16
*)

DEF gcf AS
IF = THEN 1
ELSE

IF > THEN id ELSE reverse END I
END;

I-J] I gcf

39

5.3. PowerSet

The powerset of a set is the set of ail subsets. The powerset may be recursively defined

as:

PowctSet({}) = { (} }

PowcrSct((z}uS) =
TcPowerSet(S)

These equations translate almost directly into the FP program in listing 3.

(* *
*
*
*
*
*
*
*
*
*

PowerSet

The PowerSet function generates all subsets of a given set.
Sets are represented as sequences of distinct elements.

Examples:

. <> : PowerSet -> <<>>

<a b c > : PowerSet -> < < a , b , c > , < a , b > , < a , c > , < a > , < b , c > , < b > . < c > , < > >

DEF PowerSet AS
IF null THEN [id!
ELSE

11, tl I Powerset] I

dit1 I EACH apndl END,
i

2
] I cat

END;

Lbting 3

40

5.4. QuickSort

Hoare’s quicksort algorithm partitions a sequence by comparing each element against a

chosen element. Two subsequences are formed: one subsequence contains all elements less

than the chosen element, and the other subsequence contains the remaining elements. The

two subsequences are then sorted recursively and the sorted subsequences are catenated. Of

course the case of two or fewer elements in the input sequence is trivial: the algorithm sim-

ply returns the input sequence.

To simplify the algorithm’s symmetry, the IFP program in listing 4 partitions the

sequence in subsequences of elements less-than, equal-to, and greater-than the chosen ele-

ment. The IFP program expresses the quicksort idea (partitioning on a key) without the

complex memory shuffling required by word-at-a-time languages such as Pascal.

41

(*
* Quicksort

* Sorts a sequence of numbers into ascending order using quicksort algorithm

* E.g. < 3 2 6 4 5 8 O> : Quicksort -> <O 2 3 4 5 6 8>

*

*

*)

DEF Quicksort AS
IF [length,#] I < THEN id
ELSE

(* Check for trivial case *)

[id,ll distr I (* Distribute partition key over sequence *)

FILTER < END 1 EACH 1 END I Quicksort, (* Sort lower partition *)
FILTER =' END I EACH 1 END,
FLLTE?. > END I EACH 1 END I Quicksort (* Sort upper partition *)

1

I I cat
END;

Listing 4

42

CHAPTER 8.

Performance

6.1. Speed

This section compares the execution speed of the IFP interpreter with the Berkeley FP

interpreter and conventional von-Neumann languages.

8.1.1. Illinois FP vs. Berkeley FP

The LU decomposition program in appendix C was run on both interpreters. Two times

were computed for each interpreter: load and execution. The load time includes reading

source files and parsing, which is overhead independent of the number of executions of the

program. The execution time is the additional time required' for each execution of the pro-

gram.

The load and execution times were computed from a linear regression. The interpreters

were started and the benchmark program run n times before exiting the interpreter. X linear

regression on the total time vs. n yield the load and execution times as the Y-intercept and

s io pe respectively .

The benchmark results are shown in table 2. All times are in seconds. The Berkeley FP

does not interpret FP directly, but transiates it into LISP. The LISP may be compiled with

the Liszt LISP compilerFod83. The resulting code still ran much more slowly than the IFP

interpreted code as shown in table 3.

43

Berkeley F P 4.2
Illinois FP 0.4
ratio 37.4

Table 2

Code Compile Time (sec) Load (sec) Execute (sec)
Berkeley FP 4.2 (compiled) 138.5 4.7 90
Illinois FP 0.4 0 0.90 3. ia
ratio - 5.22 28.3

Table 3

Comparing relative code sizes of the F P interpreters is difficult. Table 4 lists the

approximate source and object sizes of the interpreters. The executable file for Berkeley F P

is actually 770k, but the Berkeley FP interpreter is built on top of FRANZ Lisp, Fod83 and

thus most of the interpreter (‘639k) is actually the LISP interpreter. Of the remaining 131k,

approximately 16% collects statistics. Thus the other 84% (110k) gives about the same func-

tionality as IFP. The Illinois FP executable file is 42k. For the source line counts, each

source was stripped of comments. In the case of FRANZ lisp, the statistics package source

was omitted.

Interpreter Source Language Source Lines Object Size
Berkeley LISP 1900 110k
Illinois C 4700 42k

Table 4

44

6.1.2. Illinois FP vs. von-Neumann Languages

The IFP interpreter was also compared against ,,iterpreted BASIC and compilec Pascal.

The LU decomposition benchmark was rewritten in BASIC and Pascal. The IFP and BASIC

versions in appendix C were run on an IBM PC/AT with the MS-DOS operating system.

Both the IFP and BASIC programs were loaded into memory before execution. The resulting

times are shown in table 5,.

BASIC 9.6 sec
11 .O sec

ratio 0.87

Table 5

That the IFP version runs only 13% slower than the BASIC v-rsion is remarkable. The

BASIC code has several significant advantages. The BASIC interpreter is presumably written

in assembly language. the BASIC program takes advantage of it’s von-Neumann model by

computing the LU decomposition in place. Furthermore, the BASIC version avoids comput-

ing or using the zeros implicit in L and U, thus saving operations. The IFP interpreter is

written in C. The IFP program (see appendix C) does not compute the LU decomposition in

place, computes the implicit zeros in L and U, and computes the subexpression Aik twice as

often as i t s BASIC counterpart, since L and U both call Aik. Evidently the redundant com-

putations are not a serious impediment.

The benchmark of IFP against BASIC shows that IFP is not the terribly inefficient

language i t might appear to be. On first inspection, the IFP structural functions dis t f , d i s t t ,

and trans seems inefficient compared to the use of array subscripts in BASIC. In an inter-

preter, however, the FP structural functions have the advantage that they need only be

45

I
I
I
8
1
@
1
8

interpreted once per application. The corresponding BASIC subscripts must be interpreted

each time through the loop. For example, the IFP code:

CA,Bl I trans I EACH * END

would be correspond to the BASIC code:

100 FOR J=l TO N
110 C (J) = A(J) * B(J1
120 NEXT J

Each time through the loop each variable reference and subscript must be interpreted. Some-

one once noted “software slows down hardware.” Here we find “variables slow down

software!” This problem also occurs in compiled code, in which the hardware is interpreting

an instruction stream. Vector machines such as the CRAY X-MP’ essentially have instruc-

tions which combine a distf , distr, or trans with a subsequent each PFO.

Of course a compiler can remove the interpretive overhead. The times for the LU

decomposition on a VAX for Pascal and IFP are shown in table 6. The Pascal program was

compiled by the “pc” compiler with the optimizer turned on.

Illinois FP interpreter

ratio 8.2 28.5
compiler

Table 6

6.2. Portability

The choice of C for writing the interpreter was quite beneficial. Not only is the inter-

preter fast, but i t is portable to many different machines. Table 7 lists machines to which

~

CRAY X-,W is a trademark of CRAY RESEARCH, INC

46

~

Machine Operating System

Pyramid 9Ox 4.2 BSD UNM
IBM PC/RT 4.2 BSD UNM
VAX 11/780 4.2 BSD UNM
IBM S9000 XENM
IBMPC/AT XENM

, IBM PC MS-DOS

CRAYX-MP CTSS

IFP haa been ported. In most cases, only a few machine-dependent global constants (e.g

word size) must be changed to port the interpreter.

Table 7

1
1
B
I
1
8
I
I
1
I
1
s
I
8
1
I
1
1
I

47

CHAPTER 7.

Conclusion

The IFP interpreter meets its original specification. The interpreter provides a simple

environment for writing, debugging, and executing functional programs.

The choice of C for writing the interpreter was quite beneficial. Not only is the inter-

preter an order of magnitude faster than its LISP counterpart, but it is portable to many tar-

get machines.

IFP nee& much more sophisticated data types. Currently, IFP could be described as a

functional ALGOL-60. In particular, a record type and the corequisite accessing functions are

needed. Taken further, the interpreter could include data-encapsulation features, which

would allow for functional object-oriented programming.

48

APPENDIX A.

IFP Grammar

Character Set

IFP uses the ASCII character set. Upper and lower case letters are distinct.

Tokens

IFP’s scanner is context sensitive. The context is determined by the parser. Tokens are

the longest sequence of characters not containing a delimiter. Atoms are delimited by

spuce , < > I [I () ; : tab newfine

and function names are delimited by:

space [] () I ; : / tub newfine

Comments are delimited by “(*” and “*)” as in Pascal, and are lexically equivalent to spaces.

The delimiters for atoms and functions differ so that the comparison functions can be written

“ < ”, “ > ’’) “> = ’ l 1 and “ < =”; angle brackets within objects delimit sequences.

Strings may be in single or double quotes. Strings not quoted must not contain atom

delimiters. Strings which look like other type atoms must also be quoted. That is the strings

“t” and “f” must be quoted to distinguish them from boolean atoms; strings of digits must

be quoted to distinguish them from numeric atoms.

IFP reserved words are always in upper case. The reserved words are:

AS DEF DO EACH ELSE ELSIF

~ IF INSERT FILTER THEN WHILE

I
I
1
8
8
D

49

Productions

Table 8 shows the EBNF Wir77 production rules for IFP definitions. The Representation

production simply allows the user to invoke the IFP parser to create object representing a

function. The object created by Representation is the internal form of the function as

described in section 4.1.2.1. For example, writing

o Z K H reverse END)

is the same as writing:

MCsys each> Csys reverse>>

Def -+

Cornp -
Function -c

Conditional +

While -+

Select +

h e r t -.c
Each -
Filter -c

Debug -c

Constant -c

Construction +

Pathname -L

Object +

Rep resent at ion -
Sequence -c

Bottom -c

Atom -
Number -c

Integer -c

UnsignedInt --c

Digit -+

Boolean +

‘DEF’ String ‘AS’ Comp ‘;’
Function ‘I’ Function
Conditional I Constant Construction I Debug Each I
Filter I Iniert I Pathnarne I Select I While
‘IF’ Comp ‘THEN’ Comp
‘WHILE’ Cornp ‘DO’ Comp ‘END’
UnsignedInt [rl
‘INSERT’ Comp ‘END’
‘EACH’ Comp ‘END’
‘FILTER’ Comp ‘END’
‘@’ Object
‘# Object
‘[’ [Comp {‘,’ CompJj ‘1’
[‘/’I String ;‘/’ String!
Bottom I Atom f Sequence f Representation
‘(’ Comp ‘)’
‘<’ [Atom {‘,’Atom I] ‘>’
‘3’
Number 1 String I Boolean
Integer [‘.’ (digit I i‘e’ Integer!!
[‘+’!‘-’I UnsignedInt
Digit {Digit)
01 l l 2 I 3 I 4 / 5 f 6 l t l 8 1 9
6 81cr
t l

‘ELSIF’Comp ‘THEN’ Comp I ‘ELSE’ Comp ’END’

String -c ’ character 1 ’ ” I character I. ” 1 I character

Table 8

50

Table 9 shows the productions for IFP import files. A typical import file is shown in

listing 5.

imported

Imported function names must not conflict with other functions either local or

to the module.

ImportFile - Import I
Import - ’FROM’ Pathname ’IMPORT’ String I ’,’ String ’;’

Table 9

FROM / sys IMPORT
apndl ; apndr , cat , d l s t l , dls t r , explode, I d , Implode,
Iota, l eng th , p i c k , r e p e a t , r e v e r s e , t l , t lr , trans;

FROM /math /ar l th IMPORT
+, -, *, %, a d d l , a r c s l n , a r c c o s , a r c t a n ,
cos, dlv, exp, In, mod, mln, minus, m a x ,
power, sin, sum, sqrt, s u b l , t a n ;

FROM /math/loglc IMPORT - =, =, >, <, >=, <=, -, and, all, any, member, n u l l , or;

Listing 5

.

Table 10 shows the productions for IFP interpreter commands. for the UNOC version of

IF’P; the MS-DOS version is quite similar. The variable Editor is the name of the user’s edi-

tor. UnizComrnand may be any U N M command on the host system.

command -> ‘show’ Object ‘:’ Comp I
‘trace’ (‘on’ I ‘off) Pathname I 0’ Pathname). f
‘depth’ UnsignedInt I
‘rm’ Pathname I
Editor Pathname
UnixCommand

Table 10

51

APPENDM B.

Differences between IFP and Backus’ FP

Domain

Backus’ FP has two types of atom, the string and the empty sequence. IFP atoms do

not include the empty sequence. IFP include numbers and truth values as atoms distinct

from strings.

Functions

There are many new primitives.

Functional Form

Backus’ FP defines the INSERT form for empty sequences a returning ul, the right

identity element of f . IFP defines INSERT as returning “?” for empty sequences.

IFP has a new functional form, FILTER, which is described in section 3.3.7.

Syntax

The IFP syntax is designed to facilitate indentation and comments. XI1 functional

forms bracket their parameters, so no parentheses are necessary to indicate association.

Table 11 shows the syntactic differences between Backus’ F P and IFP. Backus’ functions

occupy a Bat name space. IFP functions are arranged in a tree structure and referenced by

pathnames, which are lexically scoped.

52

Backus
CoBoA
p - 4 g
p--f; 9-8; h
af
If
(while p f)
(bu - f x)
f
D e f f E x
4

IF P
A I B l C
IF p THEN f ELSE g END
IF p THEN f ELSIF q THEN g ELSE h END
EACH f END
INSERT f END
WHILE p DO f END
[id,*] I f
f
DEF f AS x;
<>

Table 11

1
I
1
I
1
8
I
I
I
I
I
1
8
I
I
I
I
1
I

53

APPENDIX C.

Benchmark Program

Listing 4 is the program used to compare execution speeds of the Berkeley and Illinois

FP interpreters. The program computes the LU decomposition of a matrix, and then com-

pares the product of LU with the original matrix. The difference should be 0, though due to

rounding errors it is approximately lo'**.

(*
* Compute LU decomposition of matrix A, then take sum-square-error
* between LU and A.
*I

DEF BenchMark AS
A i [[L,U] I MatMu1,ldI I WatSub I
cat I EACH [ld,ld] I * END I INSERT + END;

(* L part of LU decomposition of matrix *>
D E F L AS

IF Singleton THEN #<<1.0>>
ELSE

[
Lll,
Alk 1 [EACH t O EM),Ll I apndl

1 I ApndlCol
m;

(* U part of LU decomposition of matrix *>
D E F U AS

IF Singleton THEN Id
ELSE

c
Ulk,
Alk I [EACH #O END,U] I ApndlCol

1 I apndl
END;

54

(* T a l l of matrix a f t e r gauss lan e l l m l n a t l o n on 111 *>
DEF A l k AS

c
MatTall,
[L l l I tl ,Ulk I tl] I Outer

1 I MatSub;

(* F i r s t column of L p a r t *)
DEF Lll A S [EACH 1 E N D , l l l] I dlstr I EACH % END;

(* F i r s t row of U part *>
D E F Ulk AS 1;

(* Append column (1) to l e f t s i d e of ma t r ix (2) *>
D E F ApndlCol AS [1 , 2 l t r a n s] I apndl I t r a n s ;

(* Inner product *>
DEF Inner AS

t r a n s I EACH * END I
IF n u l l THEN #O
ELSE INSERT + END
END;

(* Matrix m u l t l p l l c a t l o n *>
DEF MatMul AS

[1 , 2 l t r a n s l ' I
dlstr' I
EACH d l s t l I

END;
EACH Inner END

(* Matrix s u b t r a c t i o n *>
D E F MatSub AS M a t C a t I EACH EACH - END END;

(* Converts pair of ma t r i ces to matrix of pairs *>
DEF MatCat AS trans I EACH t r a n s END:

(* Deletes first row and column of matrix *>
DEF MatTal1 AS tl I EACH tl END;

(* Outer product of two v e c t o r s *>
DEF Outer AS Cart I EACH EACH * END END;
(* Car te s i an product of two v e c t o r s *>
DEF Cart AS d l s t r I EACH d l s t l END;

55

(* Check If square matrix is a singleton *)
DEF Singlecon AS [length, #11 I =;

(* Input Matrix *I
DEF A AS

#<
< 2.3 4.7 -2.7 5.7 7.4 2.1 12.7 1.1 32.1
< 1.7 -1.7 5.2 3.2 1.2 3.5 2.4 2.9 1.9
< 6.1 3.4 1.2 10.6 2.9 1.7- 1.1 -0.3 1.2
(23.3 -9.7 2.4 5.2 7.6 1.1 86.2 1.7 3.2

(12.3 1.2 8.7 12.3 -4.7 -.l 3.2 2.1 4.3
< 5.7 4.7 -2.8 5.7 7.4 2.1 12.7 1.1 32.1
C 1.7 -6.7 5.6 7.4 1.2 3.5 2.7 2.8 1.9
C 3.1 -3.4 -9.2 10.6 8.9 1.7 -1.1 -0.3 3.2
(13.3 -9.7 5.2 7.6 1.1 86.2 1.3 3.2 9.7
< 1.2 3.4 -4.5 -6.7 9.8 0.1 -2.1 5.8 -9.1
C12.3 1.2 -8.7 12.3 -4.7 -.l -3.2 1.8 1.9

< 1.2 3.4 4.5 6 . 7 9.8 0.1 2.1 5.7 -9.1

>;

Listing 4

4.5 1.1 8.3>
1.7 -4.5 -9.9>
3.2 1.6 1.3>

-5.2 0.2 1.7>

4.5 1.1 8.3>
1.7 -4.5 -9.9>
3.2 1.6 1.3>
1.2 87.1 -9.2>
-5.2 0.2 1.7>
2.3 3.1 4.3>

9.7 1.2 8 7 . ~

1.8 1.9 2.3,

Listing 5 shows a BASIC version of the LU decomposition. It calculates the LU decom-

position of matrix A in place, Le. after the decomposition L is in the lower triangle of X and

U is in the Qpper triang!e of A. The diagonal of 1’s in L is implicit. Since IFP computes in

double precision, the BASIC program ais0 computes in double precision.

100
110
120
130
140
150
160
i 70
180
190
200

REM LU DECOMPOSITION BENCHMARK
DEFINT I,J,K,N
DEFDBL A,D,S
LET N=12
DIM A(N,N) ,Al(N,N) ,A2(N,N)
REM READ MATRIX A (AND SAVE IN A 1 FOR LATER USE)
FOR 1=1 TO N

F.OR J=l TO N
A(1, J>=RND
Al(1,J) = A(1,J)

NEXT J

56

210 NEXT I

230 FOR J=1 TO N
240 FOR I=J+l TO N
250 A(I,J) = A(1,J) / A(J,J)
260 FOR K=J+l TO N
270 A(I,K) = A(1,K) - A(I,J) * A(J,K)
280 NEXTK
290 NEXT I
300 NEXT J
310 E M MULTIPLY L AND U, PUT PRODUCT IN A2
320 FOR 1=1 TO N
330 FOR K=l TO N
340 s=o
350 IF I > K THEN M=K ELSE M = I
360 FOR J=1 TO M
370 IF I=J THEN S = S+A(J,K) ELSE S=S+A(I,J)*A(J,K)
380 NEXTJ
390 A 2 (I, K) =S
400 NMT K
410 NEXT I
420 REM COMPUTE SUM-SQUARE ERROR IN S
430 S=O
440 FOR 1=1 TO N
450 FOR K=L TO N
460 D = Al(1,K) - A2(I,K)
470 S = S + D * D
480 N E X T K
490 NEXT I
500 PRINT S
510 END
520 DATA 2.3 4.7 -2.7 5.7 7.4 2.1 12.7 1.1 32.1 4.5 1.1 8.3
530 DATA 1.7 -1.7 5.2 3.2 1.2 3.5 2.4 2.9 1.9 1.7 -4.5 -9.9
540 DATA 6.1 3.4 1.2 10.6 2.9 1.7 1.1 -0.3 1.2 3.2 1.6 1.3
550 DATA 23.3 -9.7 2.4 5.2 7.6 1.1 86.2 1.7 3.2 9.7 1.2 87.1
560 DATA 1.2 3.4 4.5 6.7 9.8 0.1 2.1 5.7 -9.1 -5.2 0.2 1.7
570 DATA 12.3 1.2 8.7 12.3 -4.7 -.l 3.2 2.1 4.3 1.8 1.9 2.3
580 DATA 5.7 4.7 -2.8 5.7 7.4 2.1 12.7 1.1 32.1 4.5 1.1 8.3
590 DATA 1.7 -6.7 5.6 7.4 1.2 3.5 2.7 2.8 1.9 1.7 -4.5 -9.9
600 DATA 3.1 -3.4 -9.2 10.6 8.9 1.7 -1.1 -0.3 3.2 3.2 1.6 1.3
610 DATA 13.3 -9.7 5.2 7.6 1.1 86.2 1.3 3.2 9.7 1.2 87.1 -9.2
620 DATA 1.2 3.4 -4.5 -6.7 9.8 0.1 -2.1 5.8 -9.1 -5.2 0.2 1.7
630 DATA 12.3 1.2 -8.7 12.3 -4.7 -.l -3.2 1.8 1.9 2.3 3.1 4.3

. 220 REM COMPUTE LU DECOMPOSITION IN PLACE

Listing 5

57

Of course, the BASIC program might be recoded more efficiently, but the IFP program

could also be recoded more efficiently. In the case of IFP, the recoding can be done rigorously

via algebraic theorems. For example, the Aik function is called twice per iteration, once by L

and once by U. If we define a new function LU' and substitute the definitions of L and U we

get:

D E F LU AS
r
L

IF Singleton THEN #<<1.0>>
ELSE

(* definition of L *>

c
Lll#
Alk I [EACH #O END,LI I apndl

1 t ApndlCol
EM>.

IF Singleton THEN Id (* deflnltlon of U *>
ELSE

c

1
END

I ;

Ulk
Alk I [EACH #O END,Ul I ApndlCol
apndl

Applying the algebraic rules, we finally get:

D E F LU AS
IF Singleton THEN [#<<l .O>> Id1
ELSE

[
Lll ,
A l k l [EACH #O EM>,LU],
Ulk

1 1
[

[
1,
2 I '[1,2llI I apndl

1 I ApndlCol,
c

3 1
'2 I [1,212] I ApndlCol

58

1 I apndl
1

END;

which runs 1.5 times as quickly as the separate L and U functions.

59

References

[Ah0841
Alfred Aho, “Awk - A Pattern Scanning and Processing Language,” pp. eter Wein-
berger in Uniz User’s Manual - Supplementary Documents, (March 1984).

[Bac781
John Backus, “Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebta of Programs,” CACM 21,8 pp. 613-641 ACM, (August
1978).

[Bacsl]
John Backus, “The Algebra of Functional Programs: Functional Level Reasoning,
Linear Equations, and Extended Definitions,” in Formalization of Programming Con-
cepts, Springer Verlag, New York (1981).

‘Bac84l
John Backus, “Transforming Functional Programs,” Lecture at University of Illinois a t
Urbana-Champaign (September 18, 1984).

[Bad831
Scott Baden, “Berkeley FP User’s Manual, Rev. 4.1,” UNIX Programmers Manual,
(July 27,1983).

J; Darlington, J.V. Guttag, P. Henderson, J.H. Morris, J.E.Stoy, G.J. Sussman, P.C.
Treleaven, D.A. Turner, J.H. Williams, and D.S. Wise, Functional Programming and
its Applications, Cambridge University Press (1982).

[Dar82)

[Fod831
John K. Foderaro, Keith L . Sklower, and Kevin Layer, “The FRANZ LISP Manual,” in
UNIX Bogtammer ’s Manual - Supplementary Documents, (June 1983).

iHar85I ,

Peter G. Harrison and Hessam Khoshnevisan, “Functional Programming Using F P,”
BX’B 10,8 pp. 219-232 (August 1985).

[Ive62!

[Kel86]

Kenneth Iverson, A Bogramming Language, Wiley, New York (1962).

Robert M. Keller and M. Ronan Sleep, “Applicative Caching,” AC,M Transactions on
Programming Languages and Systems 8 4 pp. 88-108 ACM, (January 1986).

iKer781
Brian W. Kernighan and Dennis M . Ritchie. The C Rogramming Language, Prentice-
Hall Inc., Englewood Cliffs, New Jersey (1978).

[Loe81]
R. G. Loeliger, Threaded Interpretive Languages, BYTE Publications, Peterborough
NH (1981).

60

[Ran431
Aya Rand, The Fountainhead, Bobbs-Merrill Company, In&, Indianapolis, New York
(1943).

[Rob851
Arch D. Robison, “IFP User’s Manual,” Professional Workstation Research Group
Technical Report #7, University of Illinois, Urbana-Champaign (1985).

[suzao1
Norihisa Suzuki, “Analysis of Pointer Rotation,” Seventh Annual ACM Symposium on
Binciples of Fzogramming Languages, pp. 1-11 ACM, (January 1980).

R. D. Tennent, “The Denotational Semantics of Programming Languages,” CACM
19,8 pp. 437453 (August 1976).

[Ten761

[Wir77]
Niklaus Wirth, “What Can We Do about the Unnecessary Diversity of Notation for
Syntactic Definitions?,” CACM 20,ll pp. 822-823 ACM, (November 1977).

IIBLIOGRAPHIC DATA
1HEET

Department of Computer Science
1304 W. Springfield
Urbana, IL 61801

1. RePon No-
UIUCDCS-R-87-1327

3. Recipient 's Accession No.

NASA NAG 1-613

. Title and Subtit le

A FUNCTIONAL PROGRAMMING INTERPRETEB

. Author(s)

- Performing Organizacion Name and Address
Arch Douglas Robison

2 Sponsoring Organization Name and Address 13. Type of Report & Period
Covered

5. Report Date

6.

8- Performing Organization'Rept.

10. Project/Task/Work Unit No.

March 1987

No*UIUCDC S -R- 8 7- 13 2 7

NASA Langley Research Center
Hampton, VA 23665

8. Availability Statement

unlimited

1- M. S. Thesis

19..Security C l a s s (Th i s

20. Security C l a s s (Th i s

21. No. of P a g e s

22. Pr ice

Report) U N C U I F D
66

I

5. Supplementary Notes

6. Absrracts
Functional Programming (FP) Bac78 'is an alternative to conventional imperative pro-
gramming languages. This thesis describes an FP interpreter implementation.
Superficially, FP appears to be a simple, but very ineffecient language. Its
simplicity, however, allows it to be interpreted quickly. Much of the inefficiency
can be removed by simple interpreter techniques.
This thesis details the design of the Illinois Functional Programming (IFP)
interpreter, an interactive functional programming implementation which runs
under both MS-DOS and UNIX. The IFP interpreter allows functions to be created,
executed, and debugged in an environment very similar to UNIX. IFP's speed
is competitive with other interpreted languages such as BASIC.

7. Key Words and Document Analysis. 170. Descriptors

functional programming
programming language
parallel processing
comp i 1 e r

7b. Identifiers/Open-Ended Terms

I Page
UNCLASSIFIED

ORM NTIS-38 (10-70) USCOMM-OC 40329-P7'

